

Application Note V11 November 2020

ISOLATED DC-DC Converter EC1SC SERIES APPLICATION NOTE

Approved By:

Department	Approved By	Checked By	Written By
Research and Development Department	Enoch	Astray Jacky	Joyce
Quality Assurance Department	Ryan	Benny	

Application Note V11 November 2020

Content

1. INTRODUCTION	3
2. DC-DC CONVERTER FEATURES	3
3. ELECTRICAL BLOCK DIAGRAM	3
4. TECHNICAL SPECIFICATIONS	4
5. MAIN FEATURES AND FUNCTIONS	7
5.1 Operating Temperature Range	7
5.2 Output Voltage Adjustment	7
6. APPLICATIONS	7
6.1 Recommended Layout PCB Footprints and Soldering Information	7
6.2 Power De-Rating Curves for EC1SC Series	8
6.3 Efficiency vs. Load Curves	9
6.4 Input Capacitance at the Power Module	11
6.5 Test Set-Up	11
6.6 Output Voltage Adjustment	11
6.7 Output Ripple and Noise Measurement	12
6.8 Output Capacitance	12
7. SAFETY & EMC	13
7.1 Input Fusing and Safety Considerations.	13
7.2 EMC Considerations	13
8. PART NUMBER	14
9. MECHANICAL SPECIFICATIONS	14

Application Note V11 November 2020

1. Introduction

The EC1SC series offer 13.2-20 watts of output power in a 2.00x1.60x0.45 inches copper packages. The EC1SC series has a 4:1 wide input voltage range of 9-36 and 18-72VDC and provides a precisely regulated output. This series has features such as high efficiency, 1500VDC of isolation and allows an ambient operating temperature range of -25°C to 71°C (de-rating above 60 °C). The modules are fully protected against output over-current and short circuit conditions. Furthermore, the standard control functions include remote on/off and adjustable output voltage. All models are very suitable for distributed power architectures, telecommunications, battery operated equipment and industrial applications.

3. Electrical Block Diagram

2. DC-DC Converter Features

- 13.2-20W Isolated Output
- 2" X1.6" Six-Sided Shield Metal Case
- High Efficiency to 84%
- 4:1 Input Range
- Pi Input Filter
- Continuous Short Circuit Protection
- Meets EN55032 Class A, Conducted
- Remote On/Off Control
- Approval UL60950-1
- Safety Meets IEC/EN/UL 62368-1

+VIN O THE STATE OF THE STATE O

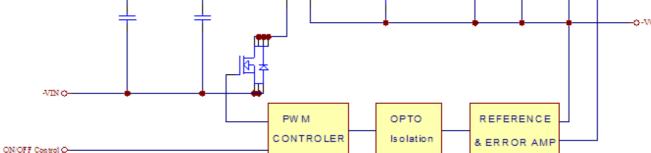


Figure 1 Electrical Block Diagram for Single Output Modules

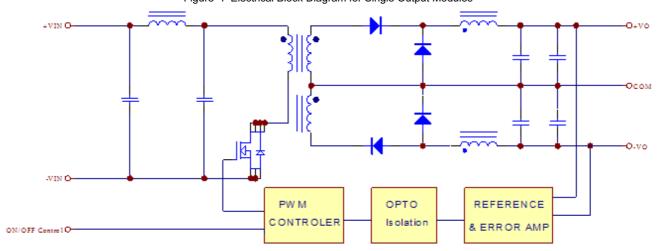


Figure 2 Electrical Block Diagram for Dual Output Modules

Application Note V11 November 2020

4. Technical Specifications

(All specifications are typical at nominal input, full load at 25°C unless otherwise noted.)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input Voltage						
Continuous		24Vin	-0.3		36	Vdc
Continuous		48Vin	-0.3		72	vuc
Toological	100ma	24Vin	`		50	Vdc
Transient	100ms	48Vin			100	Vac
Operating Ambient Temperature	Derating, above 60°C	All	-25		+71	$^{\circ}\!\mathbb{C}$
Case Temperature		All			+100	$^{\circ}\!\mathbb{C}$
Storage Temperature		All	-55		+105	$^{\circ}\mathbb{C}$
Input/Output Isolation Voltage	1 minute	All	1500			Vdc

INPUT CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Operating Input Voltage		24Vin	9	24	36	Vdc
Operating Input Voltage		48Vin	18	48	72	vac
Maximum Input Current	100% Load, Vin=9V	24Vin		2780		mA
Maximum Input Current	100% Load, Vin=18V	48Vin		1390		ША
		EC1SC01		15		
		EC1SC02		15		
		EC1SC03		15		
	Vin=24V	EC1SC04		20		
		EC1SC05		20		
		EC1SC06		20		
No-Load Input Current		EC1SC07		15		mA
No-Load Input Guirent		EC1SC11		10		111/7
		EC1SC12		10		
		EC1SC13		10		
	Vin=48V	EC1SC14		15		
		EC1SC15		15		
		EC1SC16		15		
		EC1SC17		10		
Inrush Current (I ² t)	As per ETS300 132-2	All			TBD	A^2s
Input Reflected-Ripple Current	P-P thru 12uH inductor, 5Hz to 20MHz	All			TBD	mA

Application Note V11 November 2020

OUTPUT CHARACTERISTIC

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		Vo=3.3V	3.267	3.3	3.333	
		Vo=5.0V	4.95	5	5.05	
		Vo=12V	11.89	12	12.12	
Output Voltage Set Point	Vin=nominal input, Io= Io _{max.}	Vo=15V	14.85	15	15.15	Vdc
		Vo=±5V	±4.9	±5	±5.05	
		Vo=±12V	±11.76	±12	±12.12	
		Vo=±15V	±14.7	±15	±15.15	
Output Voltage Balance	Vin=nominal input, lo=lo _{max} .	Dual			±1.0	%
Output Voltage Regulation						
Load Regulation	lo=full load to min. Load	Single			±0.5	%
Line Regulation	Vin=high line to low line, full Load	Single			±0.5	%
Temperature Coefficient	T _C =-25°C to 71°C	All			±0.02	%/°C
Output Voltage Ripple and Noise (5Hz to 20MHz bandwidth)			-		•
Peak-to-Peak	Vin=nominal input, lo=full load.	All			75	mV
RMS	Vin=nominal input, lo=full load.	All			20	mV
		Vo=3.3V			4000	
		Vo=5.0V			4000	
		Vo=12V			1670	
Operating Output Current Range		Vo=15V			1330	mA
		Vo=±5V			±2000	
		Vo=±12V			±833	
		Vo=±15V			±666	
Output DC Current-Limit Inception	Vo=90% V _{O, nominal}	All	120			%
		Vo=3.3V			4000	
		Vo=5.0V			4000	
		Vo=12V			1670	
Maximum Output Capacitance	Full load (resistive)	Vo=15V			1330	uF
		Vo=±5V			833	
		Vo=±12V			666	
		Vo=±15V			2000	

DYNAMIC CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Output Voltage Current Transient						
Step Change in Output Current	75% to 100% of lo.max.	All			±5	%
Setting Time (within 1% Vo nominal)	di/dt=0.1A/us	All			500	us

Application Note V11 November 2020

					,	
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Turn-On Delay and Rise Time						
Turn On Dolov Time From Innut	IVin min to 10%Vo set	EC1SC0X		180		22.0
Turn-On Delay Time, From Input		EC1SC1X		140		ms
Output Valtage Dies Tiese	l10%Vo_set to 90%Vo_set	EC1SC0X		90		mo
Output Voltage Rise Time		EC1SC1X		10		ms

EFFICIENCY

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		EC1SC01		81		
		EC1SC02		83		
		EC1SC03		83		
	Vin=24V	EC1SC04		83		
		EC1SC05		83		
		EC1SC06		83		
4000/ Land		EC1SC07		78		%
100% Load		EC1SC11		82		%
		EC1SC12		84		
		EC1SC13		84		
	Vin=48V	EC1SC14		84		
		EC1SC15		84		
		EC1SC16		84		
		EC1SC17		78		

ISOLATION CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input to Output	Input to Output, 1 minutes	All			1500	Vdc
Isolation Resistance	Input to Output	All	100			МΩ
Isolation Capacitance	Input to Output	All		1000		pF

FEATURE CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Switching Frequency		All		300		KHz
On/Off Control, Positive Remote Or	n/Off logic					
Logic Low (Module Off)	Von/off at Ion/off=1.0mA	All	0		1.8	V
			5.5 or			
Logic High (Module On)	Von/off at Ion/off=0.1uA	All	Open		75	V
			Circuit			
Output Voltage Trim Range	Pout=maximum rated power	All	-10		+10	%

GENERAL SPECIFICATIONS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
МТВБ	lo=100%of lo.max. Ta=25°C per MIL-HDBK-217F	All		1500		K hours
Weight		All		53		grams

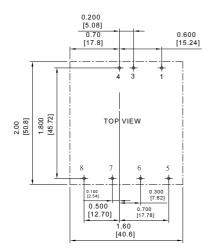
Application Note V11 November 2020

5. Main Features and Functions 5.1 Operating Temperature Range

The EC1SC series converters can be operated by a wide ambient temperature range from -25°C to 71°C (de-c above 60°C). The standard model has a copper case and case temperature can not over 100°C at normal operating.

5.2 Output Voltage Adjustment

Section 6.6 describes in detail how to trim the output voltage with respect to its set point. The output voltage on all models is adjustable within the range of +10% to -10%.


6. Applications

6.1 Recommended Layout PCB Footprints and Soldering Information

The system designer or the end user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown as Figure 3.

 $\begin{array}{ll} \mbox{All Dimensions In Inches(mm)} \\ \mbox{Tolerances} & \mbox{Inches: X.XX= \pm 0.04 , X.XXX= \pm 0.010} \\ \mbox{Millimeters: X.X= \pm 1.0 , X.XX= \pm 0.25} \end{array}$

1.3mm PLATED THROUGH HOLE 2.0mm PAD SIZE

Lead Free Wave Soldering Profile

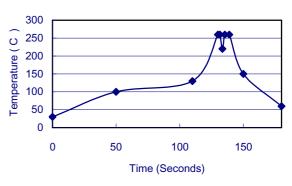


Figure 3 Recommended PCB Layout Footprint and Soldering Profile

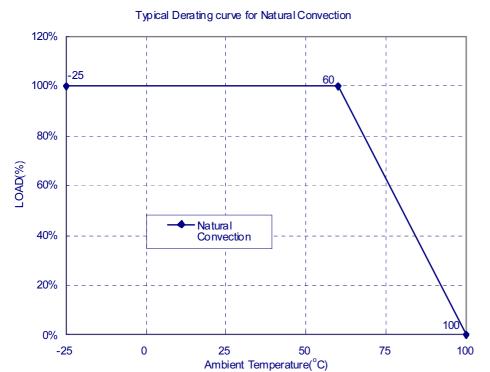
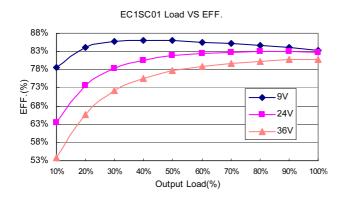
Note:

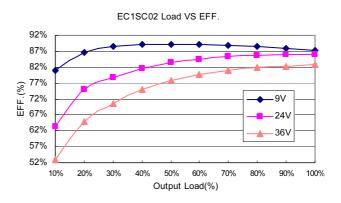
- 1. Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheat: 1.4 $^{\circ}$ C/Sec (From 50 $^{\circ}$ C to 100 $^{\circ}$ C)
- 3. Soaking temperature: 0.5 °C/Sec (From 100°C to 130°C), 60±20 seconds
- 4. Peak temperature: 260°C, above 250°C 3~6
- 5. Ramp up rate during cooling: -10.0 °C/Sec (From 260°C to 150°C)

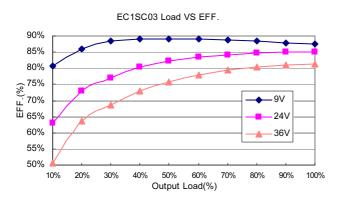
Application Note V11 November 2020

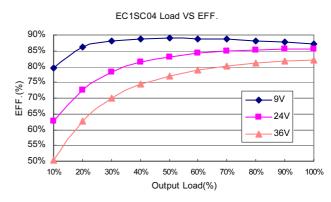
6.2 Power De-Rating Curves for EC1SC Series

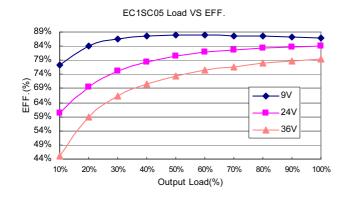
Operating Ambient temperature Range: $-25^{\circ}\text{C} \sim 71^{\circ}\text{C}$ (derating above 60°C). Maximum case temperature under any operating condition should not exceed 100°C .

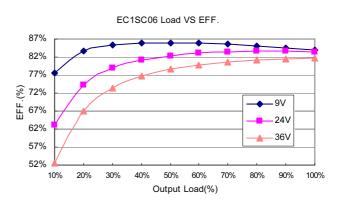



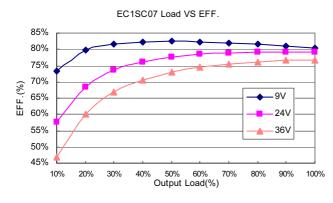

Figure 4 Typical Power De-rating Curve for EC1SC Series

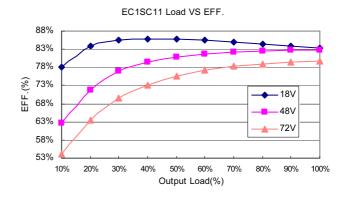


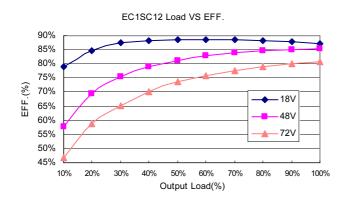

Application Note V11 November 2020

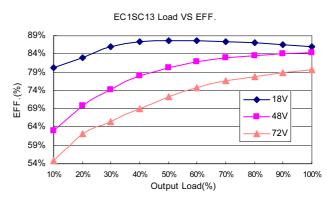

6.3 Efficiency vs. Load Curves

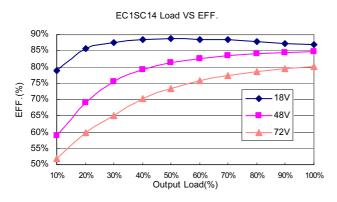


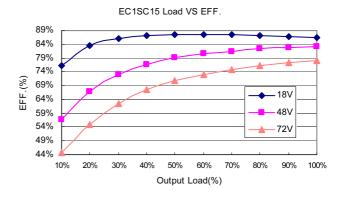


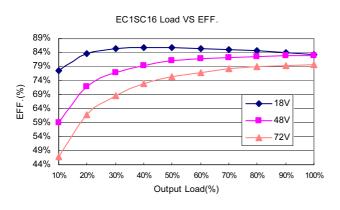


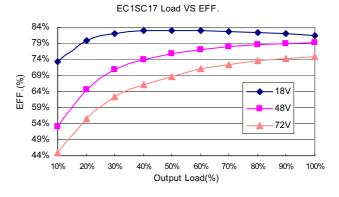


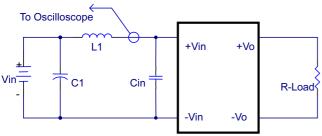







Application Note V11 November 2020





Application Note V11 November 2020

6.4 Input Capacitance at the Power Module

The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. Low ESR capacitors are good choice. Circuit as shown in Figure 5 represents typical measurement methods for reflected ripple current. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated.

source Inductance (L1).

L1: 12uH

C1: 220uF ESR < 0.10hm @100KHz.

Cin: NC

Figure 5 Input Reflected-Ripple Test Setup

6.5 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure 6. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- Load regulation and line regulation

The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{V_{IN} \times I_{IN}} \times 100\%$$

Where

V_O is output voltage, I_O is output current, V_{IN} is input voltage, I_{IN} is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

Where

V_{FL} is the output voltage at full load V_{NL} is the output voltage at 10% load

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where

V_{HL} is the output voltage of maximum input voltage at full load.

V_{LL} is the output voltage of minimum input voltage at full load.

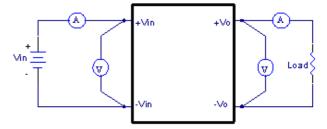


Figure 6 EC1SC Series Test Setup

6.6 Output Voltage Adjustment

In order to trim the voltage up or down one needs to connect the trim resistor either between the trim pin and -Vo for trim-up and between trim pin and +Vo for trim-down. The output voltage trim range is $\pm 10\%$. This is shown in Figure 7 and 8:

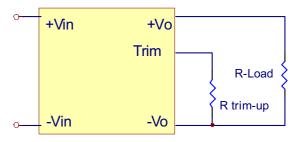


Figure 7 Trim-up Voltage Setup

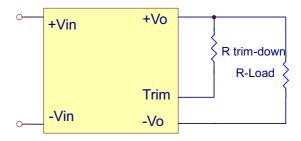


Figure 8 Trim-down Voltage Setup

1. The value of R_{trim-up} defined as:

$$R_{trim - up} = \frac{(R1 - R2 \times (Vo - V_{o, nom}))}{(Vo - V_{o, nom})} (K\Omega)$$

Where

 $R_{\text{trim-up}}$ is the external resistor in Kohm. $V_{\text{O, nom}}$ is the nominal output voltage. V_{O} is the desired output voltage.

Application Note V11 November 2020

R1, R2, are internal to the unit and are defined in Table 1.

Table 1 - Trim up and Trim down Resistor Values

Model Number	Output	R1	R2	
Model Number	Voltage(V)	(ΚΩ)	(KΩ)	
EC1SC07	3.3	3.484	7.511	
EC1SC17	3.3	3.464	7.511	
EC1SC01	5.0	5.788	8.25	
EC1SC11	5.0	5.766	0.25	
EC1SC02	12.0	19.763	14.366	
EC1SC12	12.0	19.703	14.300	
EC1SC03	15.0	25.585	14.516	
EC1SC13	15.0	25.565	14.510	
EC1SC04	±12.0	42.141	13.793	
EC1SC14	±12.0	42.141	13.793	
EC1SC05	±15.0	56.644	17.647	
EC1SC15	±13.0	30.044	17.047	
EC1SC06	±5.0	20.657	19.5	
EC1SC16	±3.0	20.007	19.5	

For example, to trim-up the output voltage of 5V module (EC1SC11) by 8% to 5.4V, R trim-up is calculated as follows:

$$V_o - V_{o, nom} = 5.4 - 5 = 0.4V$$

R1 = 5.788 KΩ

 $R2 = 8.25 \text{ K}\Omega$

$$R_{trim-up} = \frac{5.788 - 8.25 \times 0.4}{0.4} = 6.22 \text{ (K}\Omega)$$

2. The value of R_{trim-down} defined as:

$$R_{trim-down} = \frac{(R1 - R2 \times (V_{o,nom} - V_{o}))}{(V_{o,nom} - V_{o})} (K\Omega)$$

Where

 $R_{\text{trim-down}}$ is the external resistor in Kohm.

V_{O, nom} is the nominal output voltage.

Vo is the desired output voltage.

R1, R2, are internal to the unit and are defined in Table 2

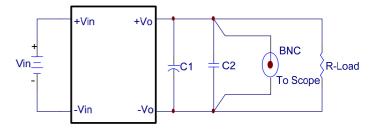
Table 2 - Trim down Resistor Values

Model Number	Output	R1	R2
Model Number	Voltage(V)	(KΩ)	(KΩ)
EC1SC07	3.3	6.10	12.1
EC1SC17	3.3	6.18	
EC1SC01	F 0	5.788	10.57
EC1SC11	5.0		
EC1SC02	40.0	00.400	00.4
EC1SC12	12.0	86.496	60.1
EC1SC03	15.0	150	87

EC1SC13			
EC1SC04	±12.0	430	120
EC1SC14	±12.0	430	120
EC1SC05	±15.0	743	177
EC1SC15	±15.0		
EC1SC06	15.0	68.296	48.1
EC1SC16	±5.0		

For example, to trim-down the output voltage of 5.0V module (EC1SC11) by 8% to 4.6V, R trim-down is calculated as follows:

$$V_{O,nom} - V_0 = 5.0 - 4.6 = 0.4V$$


 $R1 = 5.788 \text{ K}\Omega$

 $R2 = 10.57 \text{ K}\Omega$

$$R_{trim-down} = \frac{5.788 - 10.57 \times 0.4}{0.4} = 3.9 \text{ (K}\Omega)$$

6.7 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure 9. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/noise specifications are from 5Hz to 20MHz bandwidth.

Note: C1: none

C2: 0.1uF ceramic capacitor

Figure 9 Output Voltage Ripple and Noise Measurement Set-Up

6.8 Output Capacitance

The EC1SC series converters provide unconditional stability with or without external capacitors. For good transient response low ESR output capacitors should be located close to the point of load. These series converters are designed to work with load capacitance to see technical specifications.

Application Note V11 November 2020

7. Safety & EMC

7.1 Input Fusing and Safety Considerations.

The EC1SC series converters have not an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a fast acting delay fuse 4A for 24Vin models and 2A for 48Vin modules. Figure 10 circuit is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

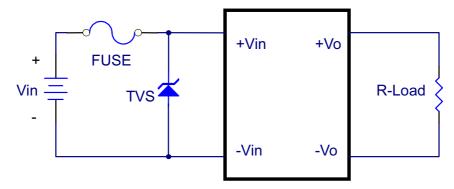


Figure 10 Input Protection

7.2 EMC Considerations

EMI Test standard: EN55032 Class B Conducted Emission

Test Condition: Nominal Input. Full Load at 25°C

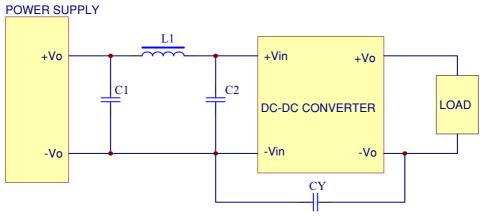
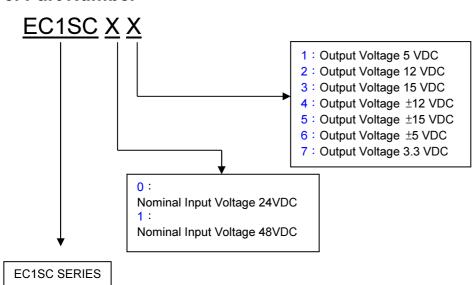
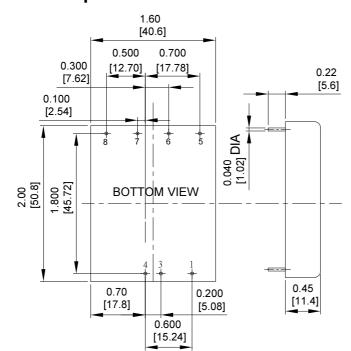


Figure 11 Connection circuit for conducted EMI testing


	EN55032 Class B			
Model No.	C1	C2	L1	CY
EC1SC0X	47uF/50V	47uF/50V	1.25uH	NC
EC1SC1X	22uF/100V	22uF/100V	3.5uH	NC

Note: The C1, C2 KY series aluminum capacitors



Application Note V11 November 2020

8. Part Number

9. Mechanical Specifications

PIN CONNECTIONS				
Pin	Single Output Dual Outpu			
1	On/Off Control	On/Off Control		
3	-V Input	-V Input		
4	+V Input	+V Input		
5	Trim	Trim		
6	-V Output	-V Output		
7	+V Output	Common		
8	No Pin	+V Output		

NOTE: Pin Size is 0.04±0.004 Inch (1.0±0.1mm)DIA All Dimensions In Inches(mm)

Tolerances Inches: X.XX= ±0.04 , X.XXX= ±0.010
Millimeters: X.X= ±1.0 , X.XX=±0.25

CINCON ELECTRONICS CO., LTD.

Headquarter Office:

14F, No.306, Sec.4, Hsin Yi Rd.,

Taipei, Taiwan Tel: 886-2-27086210 Fax: 886-2-27029852

E-mail: sales@cincon.com.tw
Web Site: http://www.cincon.com

Factory:

No. 8-1, Fu Kong Rd., Fu Hsing Industrial Park Fu Hsing Hsiang, ChangHua Hsien,

Taiwan

Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon American Office:

1655 Mesa Verde Ave, Ste 180, Ventura, CA 93003

Tel: 805-639-3350 Fax: 805-639-4101 E-mail: info@cincon.com