

EC4SBW 20W Isolated DC-DC Converters Application Note V10 June 2017

ISOLATED DC-DC CONVERTER EC4SBW SERIES APPLICATION NOTE

Approved By:

Department	Approved By	Checked By	Written By
Research and Development Department	Enoch	Danny Jacky	Eunice
Quality Assurance Department	David	Benny	

Application Note V10 June 2017

Content

1. INTRODUCTION	3
2. DC-DC CONVERTER FEATURES	3
3. ELECTRICAL BLOCK DIAGRAM	3
4. TECHNICAL SPECIFICATIONS	5
5. MAIN FEATURES AND FUNCTIONS	9
5.1 Operating Temperature Range	9
5.2 Remote On/Off	9
5.3 UVLO (Under Voltage Lock Out)	9
5.4 Over Current Protection	9
5.5 Over Voltage Protection	9
6. APPLICATIONS	9
6.1 Recommended Layout PCB Footprints and Soldering Information	9
6.2 Power De-Rating Curves for EC4SBW Series	10
6.3 Efficiency vs. Load Curves	11
6.4 Input Capacitance at the Power Module	13
6.5 Test Set-Up	13
6.6 Output Voltage Adjustment	13
6.7 Output Ripple and Noise Measurement	14
6.8 Output Capacitance	15
7. SAFETY & EMC	16
7.1 Input Fusing and Safety Considerations.	16
7.2 EMC Considerations	16
8. PART NUMBER	22
9. MECHANICAL SPECIFICATIONS	22

Application Note V10 June 2017

1. Introduction

The EC4SBW series offer 20 watts of output power in a 1.00x1.00x0.4 inches copper packages. The EC4SBW series has a 4:1 wide input voltage range of 9-36 and 18-75VDC, and provides a precisely regulated output. This series has features such as high efficiency. 1500VDC of isolation and allows an ambient operating temperature range of -40°C to 85°C (de-rating above 65 °C). The modules are fully protected against input UVLO voltage lock out), output over-current. over-voltage protection and continuous short circuit conditions. Furthermore, the standard control functions include remote on/off and adjustable output voltage. All models are very suitable for distributed power architectures. telecommunications, battery operated equipment and industrial applications.

2. DC-DC Converter Features

- * 1"x1"0.4" Shielded Metal Case
- * Very High Efficiency Up to 90.5%
- * Low No Load Power Consumption
- * 4:1 Input Range
- * Regulated Outputs
- * Fixed Switching Frequency
- * Input Under-Voltage Protection
- * Over Current Protection
- * Remote On/Off
- * Continuous Short Circuit Protection
- * Without Tantalum Capacitors inside
- * CE Mark Meets 2014/30/EU
- * Safety Meets UL60950-1, EN60950-1, and IEC60950-1

3. Electrical Block Diagram

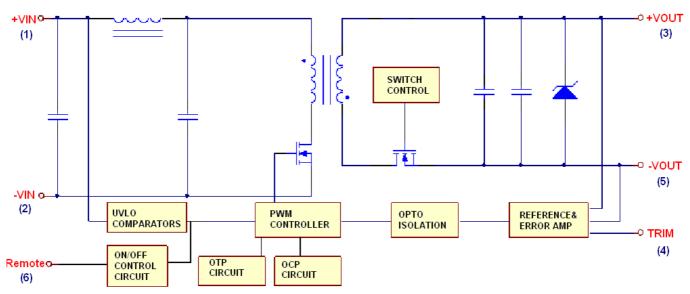


Figure 1. Electrical Block Diagram of XXS33 and XXS05

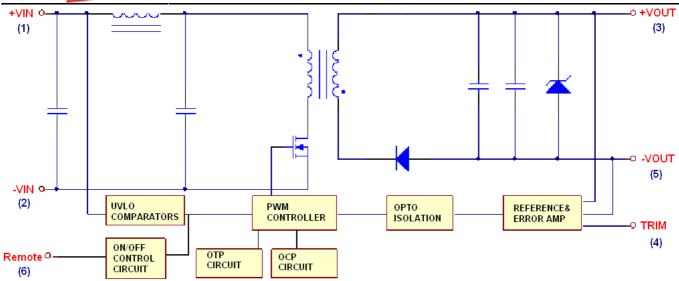


Figure 2. Electrical Block Diagram of XXS12 and XXS15

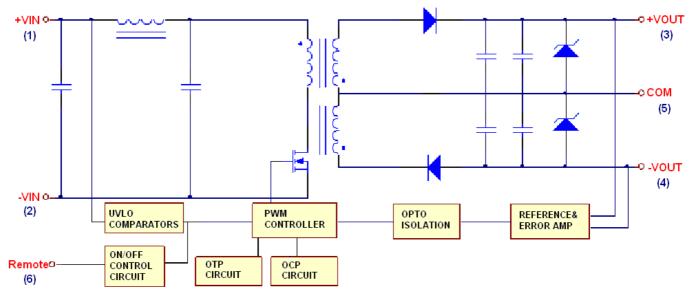


Figure 3. Electrical Block Diagram of dual output module

EC4SBW 20W Isolated DC-DC Converters Application Note V10 June 2017

4. Technical Specifications(All specifications are typical at nominal input, full load at 25°C unless otherwise noted.)

ABSOLUTE MAXIMUM RAT	INGS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input Voltage						
Continuous		$24V_{in}$	-0.3		36	Vdc
Continuous		48V _{in}	-0.3		75	vuc
Transient	100ms	$24V_{in}$			50	Vdc
Transient	1001115	48V _{in}			100	vuc
Operating Ambient Temperature	Derating, Above 65°C	All	-40		+85	$^{\circ}\!\mathbb{C}$
Case Temperature		All			105	$^{\circ}\!\mathbb{C}$
Storage Temperature		All	-55		+125	$^{\circ}\!\mathbb{C}$
Input/Output Isolation Voltage	1 minute	All			1500	Vdc
INPUT CHARACTERISTICS						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Operating Input Voltage		24V _{in}	9	24	36	Vdc
Operating Input Voltage		$48V_{in}$	18	48	75	Vuc
Input Under Voltage Lockout						
Turn-On Voltage Threshold		$24V_{in}$	8	8.5	8.8	Vdc
Turn-On Voltage Tilleshold		48V _{in}	16.5	17	17.5	vuc
Turn-Off Voltage Threshold		$24V_{in}$	7.7	8	8.3	Vdc
Tam on vollage Threeheld		48V _{in}	15.5	16	16.5	140
Lockout Hysteresis Voltage		$24V_{in}$		0.5		Vdc
		48V _{in}		1		
Maximum Input Current	100% Load, V _{in} =9V	24V _{in}			2600	mA
	100% Load, V _{in} =18V	48V _{in}			1300	
		24S33		10		
		24S05		10		
		24\$12		10		
		24\$15		10		
		24D12		10		
No-Load Input Current	V _{in} =Nominal input	24D15		10		mA
·	·	48S33		8		
		48S05		8		
		48S12		8		
		48S15		8		
		48D12		8		
Off Converter Input Current	Shutdown input idle current	48D15 All		8	10	mA
Inrush Current (I ² t)	As per ETS300 132-2	All		-	0.1	A ² s
, ,	P-P thru 12uH inductor, 5Hz to					
Input Reflected-Ripple Current	20MHz	All			30	mA

OUTPUT CHARACTERISTIC						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		Vo=3.3	3.2505	3.3	3.3495	
		Vo=5.0	4.925	5	5.075	
Output Valtage Set Deint	// =Nominal // = To=25°C	Vo=12	11.82	12	12.18	Vdc
Output Voltage Set Point	V_{in} =Nominal V_{in} , I_{o} = I_{o_max} , Tc=25°C	Vo=15	14.775	15	15.225	vac
		Vo=±12	11.82	12	12.18	
		Vo=±15	14.775	15	15.225	
Output Voltage Balance	V _{in} =nominal, Io= I _{o_max} , Tc=25°ℂ	Dual			±1.5	%
Output Voltage Regulation						
Line Regulation	V _{in} =High line to Low line Full Load	Single			±0.2	%
	Till Tright into to Low into 1 air Load	Dual			±0.5	%
Load Regulation	I _o = Full Load to min. Load	Single			±0.2	%
		Dual			±1.0	%
Cross Regulation	Load cross variation 10%/100%	Dual			±5	%
Temperature Coefficient	T _C =-40°C to 85°C	All			±0.03	%/℃
Output Voltage Ripple and Noise	5Hz to 20MHz bandwidth	I	1	T	Г	
		Vo=3.3V Vo=5V			75	
Peak-to-Peak	Full Load, 20MHz bandwidth 10uF tantalum and 1uF ceramic capacitor	Vo=15V				mV
r can-to-r can	See 6.7	Vo=12V Vo=±15V			100	1110
		Vo=±13V Vo=±12V				
		Vo=3.3V	0		4500	
		Vo=5V	0		4000	
Operating Output Current Range		Vo=12V	0		1670	mA
Operating Output Current Nange		Vo=15V	0		1330	шА
		Vo=±12V	0		±830	
		Vo=±15V	0		±660	
	Output Voltage=90% V _{O, nominal}	24\$33	110	170	200	
Output DC Current-Limit Inception	See 5.4	24S05 Others		140		%
		Vo=3.3V	110 0	140	170 5000	
		V0=3.3V Vo=5V	0		4000	
		Vo=12V	0		1650	
Maximum Output Capacitance	Full load, Resistance	Vo=12V Vo=15V	0		1300	uF
		Vo=±12V	0		800	
		Vo=±12V	0		650	
DYNAMIC CHARACTERISTIC	25	V0-±13V	0		030	
	NOTES and CONDITIONS	Dovies	N /1:	Tuning	Mess	l ln:t-
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Output Voltage Current Transient		Δ	Ī	1		0/
Step Change in Output Current	_75% to 100% of I _{o_max} _di/dt=0.1A/us	All		1	±5	%
Setting Time (within 1% Vonominal)	מווימניים. ורוימים	All		1	250	us
Turn-On Delay and Rise Time		1	<u> </u>		I	
Turn-On Delay Time, From On/Off Control	V _{on/off} to 10%V _{o_set}	All		10		ms
Turn-On Delay Time, From Input	V _{in _min} to 10%V _{o_set}	All		10		ms
Output Voltage Rise Time	10% V _{o_set} to 90% V _{o_set}	All		10		ms

EC4SBW 20W Isolated DC-DC Converters Application Note V10 June 2017

EFFICIENCY						
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		24S33		88		
		24S05		90		
	V_{in} =12 V_{dc} , I_o = $I_{o max}$, Tc =25 $^{\circ}$ C	24S12		89		0/
	See 6.3	24S15		89		%
		24D12		88.5		
100% Load		24D15		89		
100 % Load		24S33		88.5		
		24S05		90.5		
	V_{in} =24 V_{dc} , $I_o = I_{o_max}$, Tc =25 $^{\circ}$ C	24S12		89		%
	See 6.3	24S15		89		70
		24D12		88.5		
		24D15		89		
		48S33		89		
		48S05		90.5		
	V_{in} =24 Vdc, $I_o = I_{o_max}$, Tc=25°C	48S12		89.5		%
	See 6.3	48S15		89		/0
		48D12		89.5		
		48D15		89.5		
100% Load		48S33		88.5		%
		48S05		90.5		
	V_{in} =48 Vdc, $I_o = I_{o_max}$, Tc=25°C	48S12		89.5		
	See 6.3	48S15		89		
		48D12		88.5		
		48D15		88.5		
ISOLATION CHARACTER	RISTICS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input to Output	1 minutes	All	1500			Vdc
Isolation Resistance		All	1000			МΩ
Isolation Capacitance		All		1500		pF
FEATURE CHARACTERIS	STICS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		Vo=3.3V		270		
Switching Frequency		Vo=5V				KHz
		Others		330		
On/Off Control, Positive Remote	On/Off logic		0.5	1		
Logic High (Module On)	V _{on/off} at I _{on/off} =0.1uA	All	3.5 or Open Circuit		75	Vdc
Logic Low (Module Off)	V _{on/off} at I _{on/off} =1.0mA	All	0		1.2	Vdc
On/Off Control, Negative Remot	e On/Off logic		-			
Logic High (Module Off)	V _{on/off} at I _{on/off} =1.0mA	All	3.5 or Open Circuit		75	Vdc
Logic Low (Module On)	V _{on/off} at I _{on/off} =0.1uA	All	0		1.2	Vdc
	OTHOR OTHOR					

EC4SBW 20W Isolated DC-DC Converters Application Note V10 June 2017

On/Off Current (for both remote on/off logic)	I _{on/off} at V _{on/off} =0V	All		0.3	1	mA	
Leakage Current (for both remote on/off logic)	Logic High, V _{on/off} =15V				30	uA	
,		Vo=3.3V		3.9			
		Vo=5.0V		6.2			
Output Over Veltage Pretection	Zanar ar TVS Clamp a	Vo=12V		15		\/da	
Output Over Voltage Protection	Zener or TVS Clamp See 5.5	Vo=15V		18		Vdc	
		Vo=±12V		±15			
		Vo=±15V		±18			
GENERAL SPECIFICATIONS							
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units	
MTBF	I₀ =100%of I₀_max;Ta=25°⊜ per	Vo=3.3V Vo=5.0V		925		К	
IWI DI	MIL-HDBK-217F	Others		1290		hours	
Weight		All		18		grams	
Case Material	Black Coated Copper					_	
Baseplate Material	Plastic, DAP						
Potting Material	UL 94V-0						
Pin Material	Base: Copper Plating: Matte Tin						
Shock/Vibration	MIL-STD-810F						
Humidity	95% RH max. Non Condensing						
Altitude	2000m Operating Altitude			12000m T	Гranspor	t Altitude	
Thermal Shock	MIL-STD-810F						
EMI	Meets EN55022, Conducted with external input filter (See 7.2) Class A/B						
ESD	IEC61000-4-2 Level 3: Air ±8kV, Level	2: Contact ±	4kV		Perf. C	riteria A	
Radiated immunity	EN61000-4-3 Level 2: 80~1000MHz, 3	Perf. C	riteria A				
Fast Transient	EN61000-4-4 Level 1: On power input TVS required, S	Perf. C	riteria A				
Surge	EN61000-4-5 Level 1: Line to line, ±0.5	EN61000-4-5 Level 1: Line to line, ±0.5kV					
Conducted immunity	EN61000-4-6 Level 2: 0.15~80MHz, 3\	/			Perf. C	riteria A	

Application Note V10 June 2017

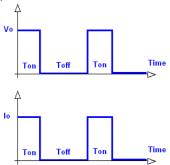
5. Main Features and Functions

5.1 Operating Temperature Range

The EC4SBW series converters can be operated by a wide ambient temperature range from -40° C to 85° C (de-rating above 65° C). The standard model has a Copper case and case temperature can not over 105° C at normal operating.

5.2 Remote On/Off

The EC4SBW series allows the user to switch the module on and off electronically with the remote on/off feature. All models are available in "positive logic" versions. The converter turns on if the remote on/off pin is high (>3.5Vdc to 75Vdc or open circuit). Setting the pin low (0 to <1.2Vdc) will turn the converter off. The signal level of the remote on/off input is defined with respect to ground. If not using the remote on/off pin, leave the pin open (converter will be on). Models with part number suffix "N" are the "negative logic" remote on/off version. The unit turns off if the remote on/off pin is high (>3.5Vdc to 75Vdc or open circuit). The converter turns on if the on/off pin input is low (0 to <1.2Vdc). Note that the converter is off by default. See 6.9

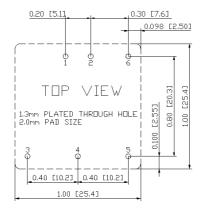

Logic State (Pin 6)	Negative Logic	Positive Logic
Logic Low – Switch Closed	Module on	Module off
Logic High – Switch Open	Module off	Module on

5.3 UVLO (Under Voltage Lock Out)

Input under voltage lockout is standard on the EC4SBW unit. The unit will shut down when the input voltage drops below a threshold, and the unit will operate when the input voltage goes above the upper threshold.

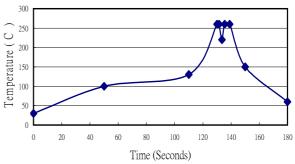
5.4 Over Current Protection

All models have internal over current and continuous short circuit protection. The unit operates normally once the fault condition is removed. At the point of current limit inception, the converter will go into hiccup mode protection.


5.5 Over Voltage Protection

The over-voltage protection consists of a zener diode to limiting the out voltage.

6. Applications


6.1 Recommended Layout PCB Footprints and Soldering Information

The system designer or the end user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown as Figure 4.

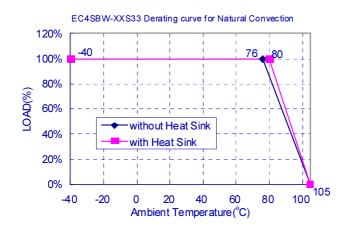
Note: Dimensions are in inches (millimeters)

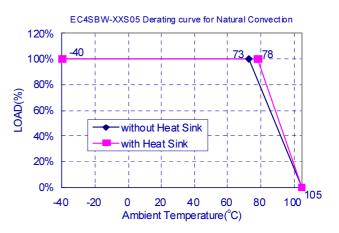
Lead Free Wave Soldering Profile

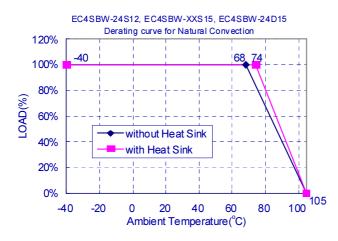
Note:

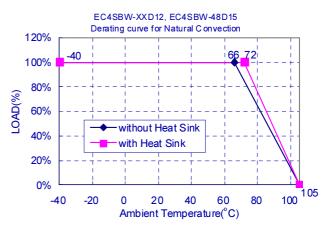
- 1. Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheat: 1.4 $^{\circ}\text{C/Sec}$ (From 50 $^{\circ}\text{C}$ to 100 $^{\circ}\text{C}$)
- 3. Soaking temperature: 0.5 $^{\circ}$ C/Sec (From 100 $^{\circ}$ C to 130 $^{\circ}$ C), 60±20 seconds
- 4. Peak temperature: 260°C, above 250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0 °C/Sec (From 260°C to 150°C)

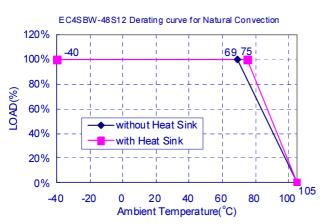
Figure 4. Recommended PCB Layout Footprints and Wave Soldering Profiles for SB packages

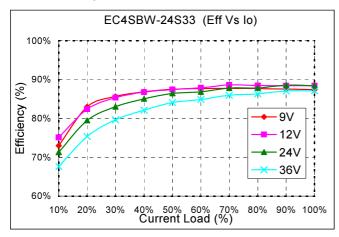


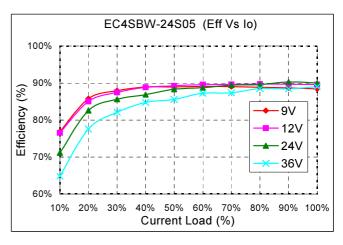

Application Note V10 June 2017

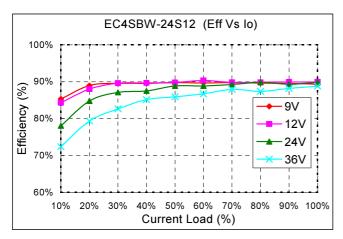

6.2 Power De-Rating Curves for EC4SBW Series

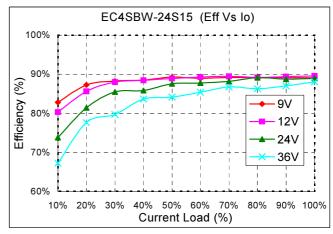

Operating Ambient temperature Range: -40°C ~ 85°C (with derating).

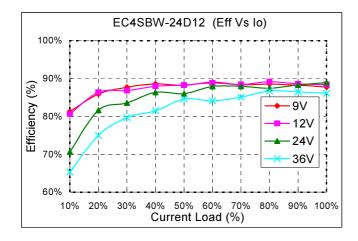

Maximum case temperature under any operating condition should not exceed 105 $^{\circ}\!\!$ C.

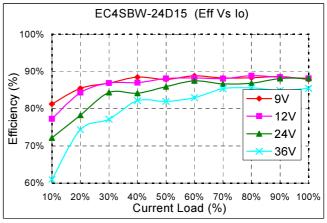


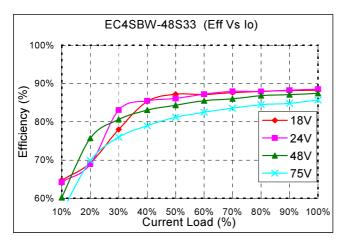


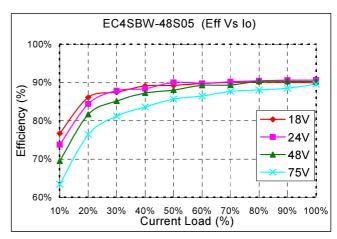


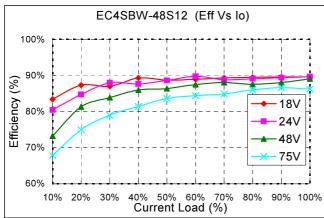

Application Note V10 June 2017

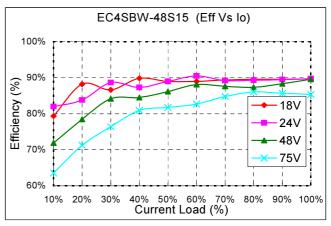

6.3 Efficiency vs. Load Curves

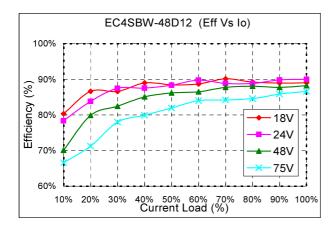


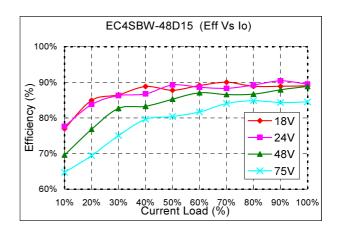


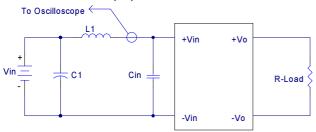












Application Note V10 June 2017

6.4 Input Capacitance at the Power Module

The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. Low ESR capacitors are good choice. Circuit as shown in Figure 5 represents typical measurement methods for reflected ripple current. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated.

Source Inductance (L1).

L1: 12uH C1: NC

Cin: 47uF ESR<0.17ohm @100KHz

Figure 5. Input Reflected-Ripple Test Setup

6.5 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure 6. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- Load regulation and line regulation.

The value of efficiency is defined as:

$$\eta = \frac{VO \times IO}{V_{IN} \times I_{IN}} \times 100\%$$

Where

Vo is output voltage,

Io is output current,

VIN is input voltage,

I_{IN} is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

Where

V_{FL} is the output voltage at full load

 V_{NL} is the output voltage at 10% load

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where

 V_{HL} is the output voltage of maximum input voltage at full load.

 V_{LL} is the output voltage of minimum input voltage at full load.

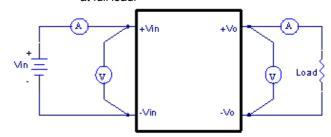


Figure 6. EC4SBW Series Test Setup

6.6 Output Voltage Adjustment

In order to trim the voltage up or down one needs to connect the trim resistor either between the trim pin and -Vo for trim-up and between trim pin and +Vo for trim-down. The output voltage trim range is $\pm 10\%$. This is shown in Figure 7 and Figure 8:

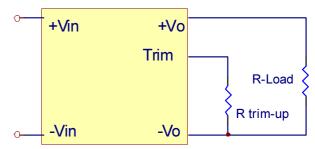


Figure 7. Trim-up Voltage Setup

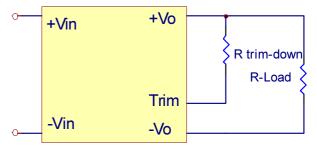


Figure 8. Trim-down Voltage Setup

Application Note V10 June 2017

1. The value of Rtrim-up defined as:

$$R_{trim-up} = (\frac{V_r \times R1 \times (R2 + R3)}{(V_O - V_{O,nom}) \times R2}) - Rt \text{ (K}\Omega)$$

Where

R trim-up is the external resistor in Kohm.

V_{O, nom} is the nominal output voltage.

Vo is the desired output voltage.

R1, Rt, R2, R3 and Vr are internal to the unit and are defined in Table 1.

Table 1 – Trim up and Trim down Resistor Values

Table 1 Thin ap and Thin dettil Redictor Values								
Model Number	Output	R1	R2	R3	Rt	Vr		
woder Number	Voltage(V)	(ΚΩ)	(ΚΩ)	(ΚΩ)	(ΚΩ)	(V)		
EC4SBW24S33	3.3	2.74	1.0	0.27	9.1	1.24		
EC4SBW48S33	3.3	2.74	1.8 0.27		9.1	1.24		
EC4SBW24S05	5.0	2.32	2.32	0	8.2	2.5		
EC4SBW48S05	5.0	2.32	2.32	U	0.2	2.5		
EC4SBW24S12	40.0	0	2.4	2.32	22	٥ ـ		
EC4SBW48S12	12.0	6.8	2.4	2.32	22	2.5		
EC4SBW24S15	15.0	0.06	2.4	3.9	27	2.5		
EC4SBW48S15	15.0	8.06	2.4	3.9	21	2.5		

For example, to trim-up the output voltage of 5.0V module (EC4SBW-24S05) by 10% to 5.5V, R trim-up is calculated as follows:

$$V_o - V_{o, nom} = 5.5 - 5.0 = 0.5V$$

R1 = $2.32 \text{ K}\Omega$

 $R2 = 2.32 \text{ K}\Omega$

 $R3 = 0 K\Omega$

Rt = $8.2 \text{ K}\Omega$,

Vr= 2.5 V

Rtrim – up =
$$(\frac{2.5 \times 2.32 \times (2.32 + 0)}{0.5 \times 2.32})$$
 – 8.2 = 3.4(K Ω)

2.The value of R trim-down defined as:

$$R_{trim-down} = R1 \times (\frac{Vr \times R1}{(V_{o,nom} - V_{o}) \times R2} - 1) - Rt \text{ (K}\Omega)$$

Where

R _{trim-down} is the external resistor in Kohm.

 $V_{\text{O, nom}}$ is the nominal output voltage.

Vo is the desired output voltage.

R1, Rt, R2, R3 and Vr are internal to the unit and are defined in Table 1.

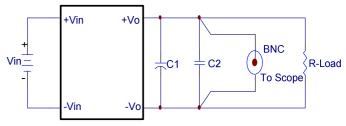
For example, to trim-down the output voltage of 5.0V module (EC4SBW-24S05) by 10% to 4.5V, R trim-down is calculated as follows:

$$V_{O,nom} - V_0 = 5.0 - 4.5 = 0.5V$$

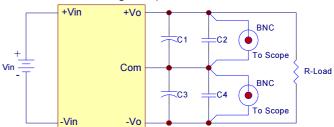
 $R1 = 2.32 \text{ K}\Omega$

 $R2 = 2.32 \text{ K}\Omega$

 $R3 = 0 K\Omega$


Rt = $8.2 \text{ K}\Omega$

Vr= 2.5 V


$$R_{trim-down} = 2.32 \times (\frac{(2.5 \times 2.32)}{0.5 \times 2.32} - 1) - 8.2 = 1.08 \text{ (K}\Omega)$$

6.7 Output Ripple and Noise Measurement

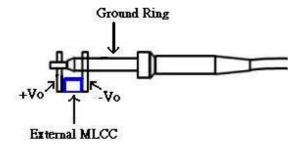
The test set-up for noise and ripple measurements is shown in Figure 9. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/noise specifications are from D.C. to 20MHz Band Width.

Single Output module

Dual Output module

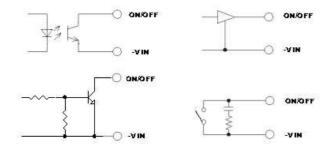
Note: C1, C3: 10uF tantalum capacitor C2, C4: 1uF ceramic capacitor

Figure 9. Output Voltage Ripple and Noise Measurement Set-Up


The conventional ground clip on an oscilloscope probe should never be used in this kind of measurement. This clip, when placed in a field of radiated high frequency energy, acts as an antenna or inductive pickup loop, creating an extraneous voltage that is not part of the output noise of the converter.

Application Note V10 June 2017

Another method is shown in below, in case of coaxial-cable/BNC is not available. The noise pickup is eliminated by pressing scope probe ground ring directly against the -Vout terminal while the tip contacts the +Vout terminal. This makes the shortest possible connection across the output terminals.



6.8 Output Capacitance

The EC4SBW series converters provide unconditional stability with or without external capacitors. For good transient response low ESR output capacitors should be located close to the point of load. These series converters are designed to work with load capacitance to see technical specifications.

6.9 Remote On/Off circuit

The converter remote On/Off circuit built-in on input side. The ground pin of input side Remote On/Off circuit is –Vin pin. **Refer to 5.2** for more details. Connection examples see below.

Remote On/Off Connection Example

Application Note V10 June 2017

7. Safety & EMC

7.1 Input Fusing and Safety Considerations.

The EC4SBW series converters have not an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a fast acting fuse 3.15A for 24Vin models and 1.6A for 48Vin models. Figure 10 circuit is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

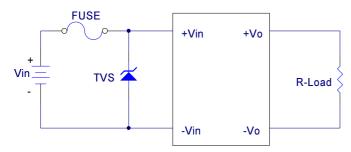


Figure 10. Input Protection

7.2 EMC Considerations

(1) EMI Test standard: EN55022 Class A Conducted Emission Test Condition: Input Voltage: Nominal, Output Load: Full Load

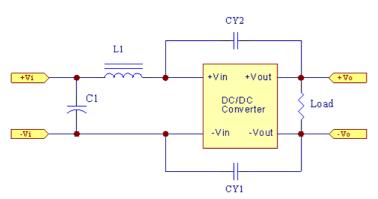
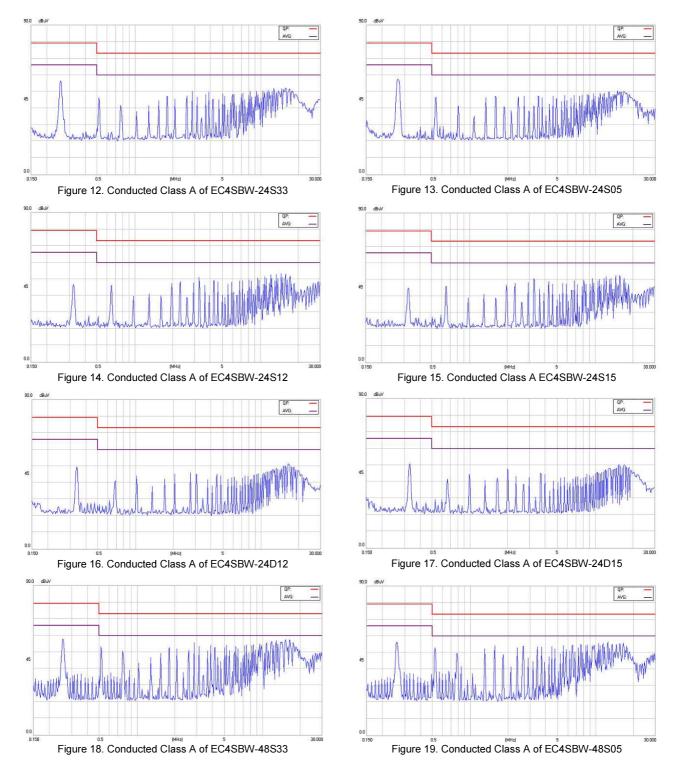
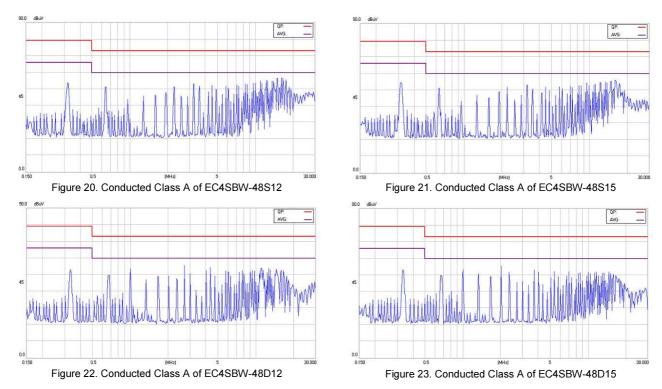



Figure 11. Connection circuit for conducted EMI testing


EN55022 class A									
Model No.	C1	L1	CY1	CY2	Model No.	C1	L1	CY1	CY2
EC4SBW-24S33	47uF/100V	1.0uH	NC	NC	EC4SBW-48S33	47uF/100V	2.2uH	NC	NC
EC4SBW-24S05	47uF/100V	1.0uH	NC	NC	EC4SBW-48S05	47uF/100V	2.2uH	NC	NC
EC4SBW-24S12	47uF/100V	1.0uH	1000pF/2KV 1206	1000pF/2KV 1206	EC4SBW-48S12	47uF/100V	2.2uH	1000pF/2KV 1206	1000pF/2KV 1206
EC4SBW-24S15	47uF/100V	1.0uH	1000pF/2KV 1206	1000pF/2KV 1206	EC4SBW-48S15	47uF/100V	2.2uH	1000pF/2KV 1206	1000pF/2KV 1206
EC4SBW-24D12	47uF/100V	1.0uH	NC	NC	EC4SBW-48D12	47uF/100V	2.2uH	NC	NC
EC4SBW-24D15	47uF/100V	1.0uH	NC	NC	EC4SBW-48D15	47uF/100V	2.2uH	NC	NC

Note: C1 is CHEMI-CON KY aluminum capacitors, CY1&CY2 are ceramic capacitors L1:1.0uH is ABC SR04031R0MLB, 2.2uH is CHILISIN SCD0403T-2R2M-N

Application Note V10 June 2017

(2) EMI Test standard: EN55022 Class B Conducted Emission Test Condition: Input Voltage: Nominal, Output Load: Full Load

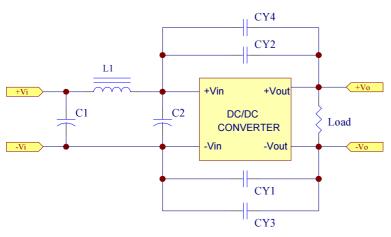
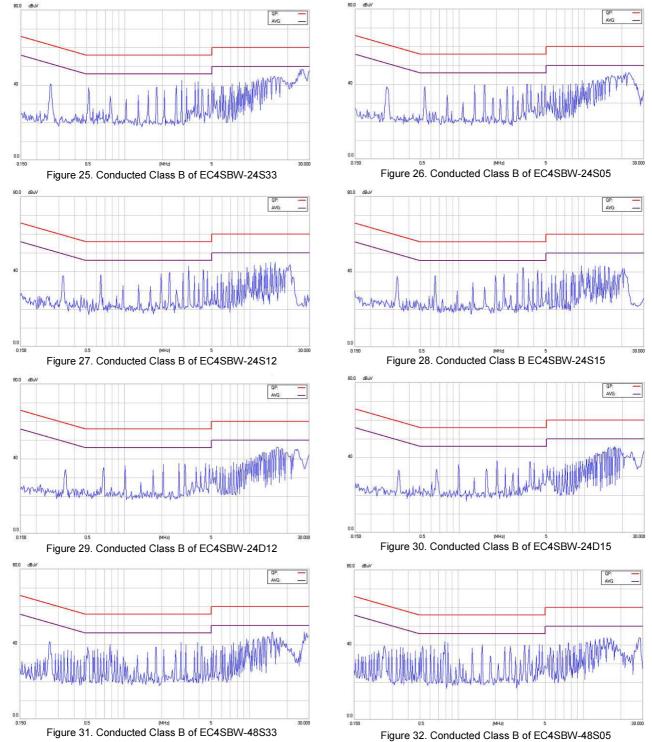
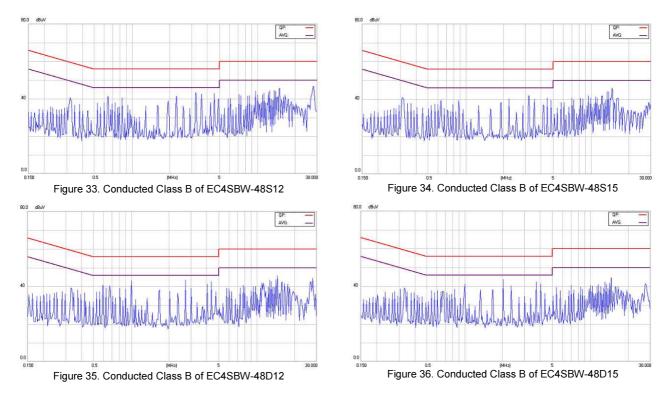
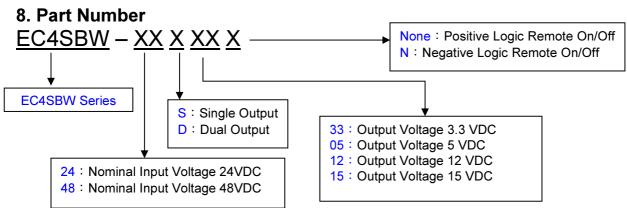
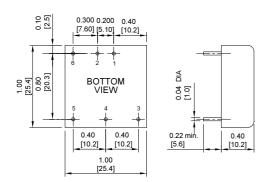



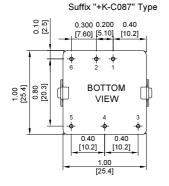
Figure 24. Connection circuit for conducted EMI testing

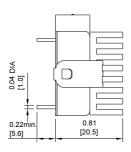

	EN55022 class B												
Model No.	C1,C2	L1	CY1	CY2	CY3	CY4	Model No.	C1,C2	L1	CY1	CY2	CY3	CY4
EC4SBW-24S33	47uF/ 100V	2.2uH	4700pF/ 2KV 1808	NC	NC	NC	EC4SBW-48S33	47uF/ 100V	2.2uH	4700pF/ 2KV 1808	4700pF/ 2KV 1808	2200pF/ 2KV 1808	2200pF/ 2KV 1808
EC4SBW-24S05	47uF/ 100V	2.2uH	4700pF/ 2KV 1808	NC	NC	NC	EC4SBW-48S05	47uF/ 100V	2.2uH	4700pF/ 2KV 1808	4700pF/ 2KV 1808	2200pF/ 2KV 1808	2200pF/ 2KV 1808
EC4SBW-24S12	47uF/ 100V	2.2uH	4700pF/ 2KV 1808	4700pF/ 2KV 1808	NC	NC	EC4SBW-48S12	47uF/ 100V	2.2uH	4700pF/ 2KV 1808	4700pF/ 2KV 1808	2200pF/ 2KV 1808	2200pF/ 2KV 1808
EC4SBW-24S15	47uF/ 100V	2.2uH	4700pF/ 2KV 1808	4700pF/ 2KV 1808	NC	NC	EC4SBW-48S15	47uF/ 100V	2.2uH	4700pF/ 2KV 1808	4700pF/ 2KV 1808	2200pF/ 2KV 1808	2200pF/ 2KV 1808
EC4SBW-24D12	47uF/ 100V	2.2uH	4700pF/ 2KV 1808	NC	NC	NC	EC4SBW-48D12	47uF/ 100V	2.2uH	4700pF/ 2KV 1808	4700pF/ 2KV 1808	2200pF/ 2KV 1808	2200pF/ 2KV 1808
EC4SBW-24D15	47uF/ 100V	2.2uH	4700pF/ 2KV 1808	NC	NC	NC	EC4SBW-48D15	47uF/ 100V	2.2uH	4700pF/ 2KV 1808	4700pF/ 2KV 1808	2200pF/ 2KV 1808	2200pF/ 2KV 1808

Note: C1&C2 are CHEMI-CON KY aluminum capacitors, CY1&CY2&CY3&CY4 are ceramic capacitors L1:2.2uH is VISHAY IHLP2525CZER2R2M01




Application Note V10 June 2017




9. Mechanical Specifications

All Dimensions In Inches (mm)

Tolerances Inches: X.XX= ± 0.04 , X.XXX= ± 0.010 Millimeters: X.X= ± 1.0 , X.XX= ± 0.25

	PIN CONNECTION								
Pin	Single	Dual							
1	+Input	+Input							
2	-Input	-Input							
3	+V Output	+V Output							
4	Trim	Common							
5	-V Output	-V Output							
6	Remote	Remote							

CINCON ELECTRONICS CO., LTD.

Headquarter Office:

14F, No.306, Sec.4, Hsin Yi Rd.,

Taipei, Taiwan Tel: 886-2-27086210

Fax: 886-2-27029852 E-mail: sales@cincon.com.tw

Web Site: http://www.cincon.com

Factory:

No. 8-1, Fu Kong Rd., Fu Hsing Industrial Park

Fu Hsing Hsiang, ChangHua Hsien,

Taiwan

Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon American Office:

1655 Mesa Verde Ave, Ste 180,

Ventura, CA 93003 Tel: 805-639-3350 Fax: 805-639-4101

Fax: 805-639-4101 E-mail: info@cincon.com